Copied to
clipboard

G = C22⋊C4×C18order 288 = 25·32

Direct product of C18 and C22⋊C4

direct product, metabelian, nilpotent (class 2), monomial, 2-elementary

Aliases: C22⋊C4×C18, C233C36, C24.2C18, C6.64(C6×D4), C2.1(D4×C18), (C22×C36)⋊3C2, (C22×C18)⋊3C4, C223(C2×C36), (C22×C4)⋊3C18, C18.64(C2×D4), (C2×C18).50D4, (C23×C6).8C6, (C2×C36)⋊11C22, C2.1(C22×C36), (C23×C18).1C2, C22.12(D4×C9), (C22×C6).10C12, (C22×C12).11C6, C23.10(C2×C18), (C2×C18).70C23, C6.29(C22×C12), C18.29(C22×C4), C22.3(C22×C18), (C22×C18).24C22, C3.(C6×C22⋊C4), (C2×C4)⋊3(C2×C18), (C2×C18)⋊7(C2×C4), (C6×C22⋊C4).C3, (C2×C6).59(C3×D4), (C2×C6).26(C2×C12), (C2×C12).79(C2×C6), C6.27(C3×C22⋊C4), (C3×C22⋊C4).13C6, (C22×C6).42(C2×C6), (C2×C6).75(C22×C6), SmallGroup(288,165)

Series: Derived Chief Lower central Upper central

C1C2 — C22⋊C4×C18
C1C3C6C2×C6C2×C18C2×C36C9×C22⋊C4 — C22⋊C4×C18
C1C2 — C22⋊C4×C18
C1C22×C18 — C22⋊C4×C18

Generators and relations for C22⋊C4×C18
 G = < a,b,c,d | a18=b2=c2=d4=1, ab=ba, ac=ca, ad=da, dbd-1=bc=cb, cd=dc >

Subgroups: 282 in 198 conjugacy classes, 114 normal (18 characteristic)
C1, C2, C2, C2, C3, C4, C22, C22, C22, C6, C6, C6, C2×C4, C2×C4, C23, C23, C23, C9, C12, C2×C6, C2×C6, C2×C6, C22⋊C4, C22×C4, C24, C18, C18, C18, C2×C12, C2×C12, C22×C6, C22×C6, C22×C6, C2×C22⋊C4, C36, C2×C18, C2×C18, C2×C18, C3×C22⋊C4, C22×C12, C23×C6, C2×C36, C2×C36, C22×C18, C22×C18, C22×C18, C6×C22⋊C4, C9×C22⋊C4, C22×C36, C23×C18, C22⋊C4×C18
Quotients: C1, C2, C3, C4, C22, C6, C2×C4, D4, C23, C9, C12, C2×C6, C22⋊C4, C22×C4, C2×D4, C18, C2×C12, C3×D4, C22×C6, C2×C22⋊C4, C36, C2×C18, C3×C22⋊C4, C22×C12, C6×D4, C2×C36, D4×C9, C22×C18, C6×C22⋊C4, C9×C22⋊C4, C22×C36, D4×C18, C22⋊C4×C18

Smallest permutation representation of C22⋊C4×C18
On 144 points
Generators in S144
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126)(127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144)
(1 119)(2 120)(3 121)(4 122)(5 123)(6 124)(7 125)(8 126)(9 109)(10 110)(11 111)(12 112)(13 113)(14 114)(15 115)(16 116)(17 117)(18 118)(19 90)(20 73)(21 74)(22 75)(23 76)(24 77)(25 78)(26 79)(27 80)(28 81)(29 82)(30 83)(31 84)(32 85)(33 86)(34 87)(35 88)(36 89)(37 139)(38 140)(39 141)(40 142)(41 143)(42 144)(43 127)(44 128)(45 129)(46 130)(47 131)(48 132)(49 133)(50 134)(51 135)(52 136)(53 137)(54 138)(55 94)(56 95)(57 96)(58 97)(59 98)(60 99)(61 100)(62 101)(63 102)(64 103)(65 104)(66 105)(67 106)(68 107)(69 108)(70 91)(71 92)(72 93)
(1 133)(2 134)(3 135)(4 136)(5 137)(6 138)(7 139)(8 140)(9 141)(10 142)(11 143)(12 144)(13 127)(14 128)(15 129)(16 130)(17 131)(18 132)(19 59)(20 60)(21 61)(22 62)(23 63)(24 64)(25 65)(26 66)(27 67)(28 68)(29 69)(30 70)(31 71)(32 72)(33 55)(34 56)(35 57)(36 58)(37 125)(38 126)(39 109)(40 110)(41 111)(42 112)(43 113)(44 114)(45 115)(46 116)(47 117)(48 118)(49 119)(50 120)(51 121)(52 122)(53 123)(54 124)(73 99)(74 100)(75 101)(76 102)(77 103)(78 104)(79 105)(80 106)(81 107)(82 108)(83 91)(84 92)(85 93)(86 94)(87 95)(88 96)(89 97)(90 98)
(1 100 119 21)(2 101 120 22)(3 102 121 23)(4 103 122 24)(5 104 123 25)(6 105 124 26)(7 106 125 27)(8 107 126 28)(9 108 109 29)(10 91 110 30)(11 92 111 31)(12 93 112 32)(13 94 113 33)(14 95 114 34)(15 96 115 35)(16 97 116 36)(17 98 117 19)(18 99 118 20)(37 67 139 80)(38 68 140 81)(39 69 141 82)(40 70 142 83)(41 71 143 84)(42 72 144 85)(43 55 127 86)(44 56 128 87)(45 57 129 88)(46 58 130 89)(47 59 131 90)(48 60 132 73)(49 61 133 74)(50 62 134 75)(51 63 135 76)(52 64 136 77)(53 65 137 78)(54 66 138 79)

G:=sub<Sym(144)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (1,119)(2,120)(3,121)(4,122)(5,123)(6,124)(7,125)(8,126)(9,109)(10,110)(11,111)(12,112)(13,113)(14,114)(15,115)(16,116)(17,117)(18,118)(19,90)(20,73)(21,74)(22,75)(23,76)(24,77)(25,78)(26,79)(27,80)(28,81)(29,82)(30,83)(31,84)(32,85)(33,86)(34,87)(35,88)(36,89)(37,139)(38,140)(39,141)(40,142)(41,143)(42,144)(43,127)(44,128)(45,129)(46,130)(47,131)(48,132)(49,133)(50,134)(51,135)(52,136)(53,137)(54,138)(55,94)(56,95)(57,96)(58,97)(59,98)(60,99)(61,100)(62,101)(63,102)(64,103)(65,104)(66,105)(67,106)(68,107)(69,108)(70,91)(71,92)(72,93), (1,133)(2,134)(3,135)(4,136)(5,137)(6,138)(7,139)(8,140)(9,141)(10,142)(11,143)(12,144)(13,127)(14,128)(15,129)(16,130)(17,131)(18,132)(19,59)(20,60)(21,61)(22,62)(23,63)(24,64)(25,65)(26,66)(27,67)(28,68)(29,69)(30,70)(31,71)(32,72)(33,55)(34,56)(35,57)(36,58)(37,125)(38,126)(39,109)(40,110)(41,111)(42,112)(43,113)(44,114)(45,115)(46,116)(47,117)(48,118)(49,119)(50,120)(51,121)(52,122)(53,123)(54,124)(73,99)(74,100)(75,101)(76,102)(77,103)(78,104)(79,105)(80,106)(81,107)(82,108)(83,91)(84,92)(85,93)(86,94)(87,95)(88,96)(89,97)(90,98), (1,100,119,21)(2,101,120,22)(3,102,121,23)(4,103,122,24)(5,104,123,25)(6,105,124,26)(7,106,125,27)(8,107,126,28)(9,108,109,29)(10,91,110,30)(11,92,111,31)(12,93,112,32)(13,94,113,33)(14,95,114,34)(15,96,115,35)(16,97,116,36)(17,98,117,19)(18,99,118,20)(37,67,139,80)(38,68,140,81)(39,69,141,82)(40,70,142,83)(41,71,143,84)(42,72,144,85)(43,55,127,86)(44,56,128,87)(45,57,129,88)(46,58,130,89)(47,59,131,90)(48,60,132,73)(49,61,133,74)(50,62,134,75)(51,63,135,76)(52,64,136,77)(53,65,137,78)(54,66,138,79)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (1,119)(2,120)(3,121)(4,122)(5,123)(6,124)(7,125)(8,126)(9,109)(10,110)(11,111)(12,112)(13,113)(14,114)(15,115)(16,116)(17,117)(18,118)(19,90)(20,73)(21,74)(22,75)(23,76)(24,77)(25,78)(26,79)(27,80)(28,81)(29,82)(30,83)(31,84)(32,85)(33,86)(34,87)(35,88)(36,89)(37,139)(38,140)(39,141)(40,142)(41,143)(42,144)(43,127)(44,128)(45,129)(46,130)(47,131)(48,132)(49,133)(50,134)(51,135)(52,136)(53,137)(54,138)(55,94)(56,95)(57,96)(58,97)(59,98)(60,99)(61,100)(62,101)(63,102)(64,103)(65,104)(66,105)(67,106)(68,107)(69,108)(70,91)(71,92)(72,93), (1,133)(2,134)(3,135)(4,136)(5,137)(6,138)(7,139)(8,140)(9,141)(10,142)(11,143)(12,144)(13,127)(14,128)(15,129)(16,130)(17,131)(18,132)(19,59)(20,60)(21,61)(22,62)(23,63)(24,64)(25,65)(26,66)(27,67)(28,68)(29,69)(30,70)(31,71)(32,72)(33,55)(34,56)(35,57)(36,58)(37,125)(38,126)(39,109)(40,110)(41,111)(42,112)(43,113)(44,114)(45,115)(46,116)(47,117)(48,118)(49,119)(50,120)(51,121)(52,122)(53,123)(54,124)(73,99)(74,100)(75,101)(76,102)(77,103)(78,104)(79,105)(80,106)(81,107)(82,108)(83,91)(84,92)(85,93)(86,94)(87,95)(88,96)(89,97)(90,98), (1,100,119,21)(2,101,120,22)(3,102,121,23)(4,103,122,24)(5,104,123,25)(6,105,124,26)(7,106,125,27)(8,107,126,28)(9,108,109,29)(10,91,110,30)(11,92,111,31)(12,93,112,32)(13,94,113,33)(14,95,114,34)(15,96,115,35)(16,97,116,36)(17,98,117,19)(18,99,118,20)(37,67,139,80)(38,68,140,81)(39,69,141,82)(40,70,142,83)(41,71,143,84)(42,72,144,85)(43,55,127,86)(44,56,128,87)(45,57,129,88)(46,58,130,89)(47,59,131,90)(48,60,132,73)(49,61,133,74)(50,62,134,75)(51,63,135,76)(52,64,136,77)(53,65,137,78)(54,66,138,79) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126),(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)], [(1,119),(2,120),(3,121),(4,122),(5,123),(6,124),(7,125),(8,126),(9,109),(10,110),(11,111),(12,112),(13,113),(14,114),(15,115),(16,116),(17,117),(18,118),(19,90),(20,73),(21,74),(22,75),(23,76),(24,77),(25,78),(26,79),(27,80),(28,81),(29,82),(30,83),(31,84),(32,85),(33,86),(34,87),(35,88),(36,89),(37,139),(38,140),(39,141),(40,142),(41,143),(42,144),(43,127),(44,128),(45,129),(46,130),(47,131),(48,132),(49,133),(50,134),(51,135),(52,136),(53,137),(54,138),(55,94),(56,95),(57,96),(58,97),(59,98),(60,99),(61,100),(62,101),(63,102),(64,103),(65,104),(66,105),(67,106),(68,107),(69,108),(70,91),(71,92),(72,93)], [(1,133),(2,134),(3,135),(4,136),(5,137),(6,138),(7,139),(8,140),(9,141),(10,142),(11,143),(12,144),(13,127),(14,128),(15,129),(16,130),(17,131),(18,132),(19,59),(20,60),(21,61),(22,62),(23,63),(24,64),(25,65),(26,66),(27,67),(28,68),(29,69),(30,70),(31,71),(32,72),(33,55),(34,56),(35,57),(36,58),(37,125),(38,126),(39,109),(40,110),(41,111),(42,112),(43,113),(44,114),(45,115),(46,116),(47,117),(48,118),(49,119),(50,120),(51,121),(52,122),(53,123),(54,124),(73,99),(74,100),(75,101),(76,102),(77,103),(78,104),(79,105),(80,106),(81,107),(82,108),(83,91),(84,92),(85,93),(86,94),(87,95),(88,96),(89,97),(90,98)], [(1,100,119,21),(2,101,120,22),(3,102,121,23),(4,103,122,24),(5,104,123,25),(6,105,124,26),(7,106,125,27),(8,107,126,28),(9,108,109,29),(10,91,110,30),(11,92,111,31),(12,93,112,32),(13,94,113,33),(14,95,114,34),(15,96,115,35),(16,97,116,36),(17,98,117,19),(18,99,118,20),(37,67,139,80),(38,68,140,81),(39,69,141,82),(40,70,142,83),(41,71,143,84),(42,72,144,85),(43,55,127,86),(44,56,128,87),(45,57,129,88),(46,58,130,89),(47,59,131,90),(48,60,132,73),(49,61,133,74),(50,62,134,75),(51,63,135,76),(52,64,136,77),(53,65,137,78),(54,66,138,79)]])

180 conjugacy classes

class 1 2A···2G2H2I2J2K3A3B4A···4H6A···6N6O···6V9A···9F12A···12P18A···18AP18AQ···18BN36A···36AV
order12···22222334···46···66···69···912···1218···1818···1836···36
size11···12222112···21···12···21···12···21···12···22···2

180 irreducible representations

dim111111111111111222
type+++++
imageC1C2C2C2C3C4C6C6C6C9C12C18C18C18C36D4C3×D4D4×C9
kernelC22⋊C4×C18C9×C22⋊C4C22×C36C23×C18C6×C22⋊C4C22×C18C3×C22⋊C4C22×C12C23×C6C2×C22⋊C4C22×C6C22⋊C4C22×C4C24C23C2×C18C2×C6C22
# reps14212884261624126484824

Matrix representation of C22⋊C4×C18 in GL4(𝔽37) generated by

1000
03600
00280
00028
,
1000
03600
003630
0001
,
1000
0100
00360
00036
,
6000
0100
00725
003530
G:=sub<GL(4,GF(37))| [1,0,0,0,0,36,0,0,0,0,28,0,0,0,0,28],[1,0,0,0,0,36,0,0,0,0,36,0,0,0,30,1],[1,0,0,0,0,1,0,0,0,0,36,0,0,0,0,36],[6,0,0,0,0,1,0,0,0,0,7,35,0,0,25,30] >;

C22⋊C4×C18 in GAP, Magma, Sage, TeX

C_2^2\rtimes C_4\times C_{18}
% in TeX

G:=Group("C2^2:C4xC18");
// GroupNames label

G:=SmallGroup(288,165);
// by ID

G=gap.SmallGroup(288,165);
# by ID

G:=PCGroup([7,-2,-2,-2,-3,-2,-2,-3,336,365,360]);
// Polycyclic

G:=Group<a,b,c,d|a^18=b^2=c^2=d^4=1,a*b=b*a,a*c=c*a,a*d=d*a,d*b*d^-1=b*c=c*b,c*d=d*c>;
// generators/relations

׿
×
𝔽